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 High storage capacity of MgH: up
to 5 wt% by adding 16 wt% Nickel.

e Clear evidence of the effect of
moisture content in MgH:
performance.

e A unique behavior of MgH. after
adding 5 wt% C at specific pressure
and temperature.

« Ease of process to improve MgH,

system for large sample capacity.
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The addition of nickel as catalyst and particle size reduction through milling process is
considered as the best approach for MgH, properties to be thermodynamically and kinet-
ically more favorable. The recent development in MgH; is done by adding Ni (14—16 wt%)
and particle size reduction through simple mechanical milling at a large sample of 100 g
The research sequences are easy to adopt for the implementation and sustainable research
of MgH,. Starting from the moisture test to the milling process, continue with particle size
distribution (PSD) for the milled sample and final moisture test after PSD. Somu ical
H;
within 20 min at 573 K, the effect of moisture content on system performance and the

finding from our research includes high capacity storage of Mggy:Nijg above 5

different effect of carbon (C) in the system at specific temperature and pressure that may
have.
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Introduction

Solar energy is the best renewable energy option because the
availability of the sun is sufficient to meet the energy con-
sumption for the entire world [1]. The development of
concentrated solar power (CSP) for harvesting solar energy is
quite promising for many applications such as an electric
generator or power plants, heating and cooling applications
and also stored the energy in the form thermal energy is
cheaper than electric [2—4]. Thermal energy storage has an

ential role in CSP systems [5,6], and among the concepts of
g;rmal energy storage, thermoc ical heat storage is
highly recommended because itha:g;‘h energy density and
long-term storage [7—9].

The metal hydride concept for thermochemical is known
as the most prominent option because this model may be used
for thermal storage and hydrogen storage [10,11]. Magnesium-
based metal hydride (Mg) or magnesium hydride (MgH;) is
highly recommended because it has high energy density up to
2257 kJ/kg, wide operating temperature range (220 *C—550°C),
low cost, lightweight and high gravimetric capacity for
hydrogen storage 7.6 wt% H; [12—15]. However, magnesium
has poor thermodynamic properties and also slow kinetic rate
during hydrogen absorption and desorption [16].

There are some methods to improve the MgH; system, ie.,
by surface modification for the metal bulk material to promote
easy chemisorption for hydride formation, adding catalysts to
promote quick hydrogen sorption and lowering dehydriding
temperature [17]. Nickel (Ni) is the most commonly used
element as an alloy in the Mg system because it provides an
excellent catalytic effect [18—21]. Many studies have shown
the effect of Ni addition on MgH, system performance, which
is summarized in Table 1. Improvement through surface
modification is made by decreasing particle size through
mechanical milling. The milling method is known as a cheap
and appropriate method to be used on a large scale [22,23].
Table 2 shows several studies for the improvement of the
MgH, system through the milling process.

The addition of Niand application of ball milling provides a
positive effect on the MgH, system. However, it still has a side
effect of a reduction in H, storage capacity on the system.
Zhang ] et al. [29] revealed the latest progress on magnesium
hydride system improvement and stated that the addition of
Nias a catalyst and the application of ball milling processing is
the optimal method to improve MgH, system. The essential
consideration to minimize the reduction in H, storage ca-
pacity is the proportion of Mg and Ni on the system [30]. For
mechanical modification through the milling process, the
process should be carried out through a specific set of process
milling parameters in order to obtain more reliable data [31].

Although there are already many studies associated with
Ni addition and particle size reduction through ball milling,
the test results and analysis still show some differences.
The differences are reasonable because the sample treat-
ment, proportion and surface oxidation conditions may be
different [28]. One of the most often missed factors in MgH,
system studies is the moisture content of the tested ma-
terial. Magnesium is known to be very sensitive to free air
and easy to react with oxygen, forming an oxide layer that
can slow down hydrogenation and dehydrogenation rate
[32-35]. Another factor to be considered is the sample ca-
pacity on bed storage because it can affect the test results
[36]. Furthermore, improvement and investigation of mag-
nesium hydride also have to consider the technical aspect
and production plan to reduce the cost of material pro-
cessing for economically feasible [37-39].

The primary purpose of this study is to improve the
thermodynamic and kinetic properties of magnesium hy-
dride through Ni addition with a specific processing method
that can be easily adapted in industry. A study showed that
adding 15 wt% Ni to Mg was able to achieve maximum
reversible storage up to 6 wt% [40], but it has not described
how the sample was processed and the capacity of the
sample. It is a good reference value for the MgH, system
with Ni addition, however it needs to be studied further for
the thermodynamic and kinetic properties of the material
under clear and measurable processing steps. Hence, the
study is started by measure the moisture content of the
sample before the reduction of particle size through an
adequate ball milling process that can be easy to be adopted
in the industry. After that, testing of particle size distribu-
tion is performed to determine the grain size distribution of
milled material. The milled samples are then measured for
the final moisture content to be compared with the initial
result to find the effect of material processing on moisture
content. All samples are tested for the initial hydrogenation
and dehydrogenation to find the best sample based on the
kinetic rate. Finally, the best sample is characterized
through pressure-composition-isotherm to assess the ther-
modynamic and kinetic properties in order to obtain more
profound sample properties based on the thermodynamic
and kinetic aspects of the sample [41,42].

Experimental procedure
Sample preparation
There are two significant parameters for processing the ma-

terial, which are based on the ratio of Mg to Ni and milling
parameters. The ratio used by reference is Mggs:Niis by mass

Table 1 — Several reports in Mg + Ni hydride systems.

Material Method Results Ref.
Mgp s7Nig 13 Melt-spinning Prage capacity nearly 6 wt% H [20]
Mg + 10 wt¥% Ni + 3 wt MgD - eversible H; storage capacity 4.4 wt3%  [21]
Mg + 20 wt% Ni hydride complex (composite) Planetary ball mill 6.3 wit¥ H; capacity at 100°C [24]
Mg:Nisg-33 Wt% Nanostructuring through mechanical grinding H; capacity 1.7-2.2 wt% [25]
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Table 2 — Summary milling parameters from various research.

Material Milling Type Parameters Ref.
Mg -Sb-C ball-mill Fritsch- Milled under a hydrogen atmosphere, mass ratio to the ball 240 [26]
Pulverisettet
MgH; + NiPc and G Ball mill Vibrating miller, 2 h milling time, the ball to powder ration 30:1 [27]
(composite)
MgH; + Additives Reactive Ball Mill Custom made ultrahigh-energy milling, milling under 150 bar hydrogen [28]

pressure, the ball to powder ratio 110:1, milling time variation: 0.5 h, 2 h,

4hand6h.

ratio and variation +1% Ni to study the effect of nickel. Com-
mercial magnesium powder (74 pm, purity: 99.9%, Tanyun
Chemical Co., Ltd.), nickel powder (63 pm, purity: 99.9%,
Tanyun Chemical Co., Ltd.) were purchased and prepared by
mass ratio MggaNijg, Mgss:Nij; and MggeNij;. To provide
reliable data for sustainable research, the mass for each
sample is 100 g.

The milling variables were milling time and ball to powder
ratio because these parameters are critical variables in the
milling process, especially for scale-up production, which
directly affecting the results of milled material and the
consumed energy during the milling process [43-45]. The
milling time is set at 3 and 5 h as variation by considering the
mass of material, and the final target of the milled size is
44 pm; furthermore, shorter duration also minimizes the risk
of contamination [46].

A custom ring-mill with an air-cooling system for main-
taining temperature during the grinding process is used. Refer
to the manual and considering the size of the charge mate-
rials, the size of the milling mediais @5 mm stainless steel ball
and variation ball to powder ratio 20:1 and 30:1. The milling
was taking for every 1h and rest for 30 min to cooling down
the machine and material. The milling was conducted under
inert atmosphere (Ar), and stearic acid (1 wt%) was used for
milling agents and then removed after milling through vae-
uum gas furnace. All material handling and preparation were
carried out in a glove box under pure argon circulation to
protect the material from oxidation and air exposure [47].
Table 3 summarizes all the prepared samples.

Experiment method

After the milling process, Particle Size Distribution (PSD) test
(Mastersizer 2000, Malvern) is performed to verify the particle
distribution of the milled sample. Since magnesium is very
sensitive to air and oxidation, the moisture test (Mettler
Toledo) is conducted before and after PSD to ensure the
physical properties of the sample and provide detailed data
[48-53]. The Sievert Type Apparatus is used for volumetric
testing methods and activation processes to ensure more ac-
curate results and ease in the testing process for large samples
[54-57]. The apparatus is modified to enhance and maximize
hydrogenation treatment for each sample. Some references
relating to the testing and design process of the apparatus are
used as relevant references to guarantee valid measurement
values [58-60]. The void volume calibration process of bed
storage and reference is done carefully and repeatedly,
including for measurement instruments and data reading
processes.

The initial hydrogenation and dehydrogenation test for all
milled samples were carried out using the temperature-
programmed method [61]. The heating rate is made constant
at 5K/min with a working pressure for hydriding 5 MPa and
0.1 MPa for dehydriding and carried out within 2 h for each
sample. The results of the initial tests are used to determine
the best sample based on the kinetic characteristic during
hydrogenation and dehydrogenation. The best sample is
chosen for further through Pressure-
Composition-Isotherms. Considering the addition of carbon
can increase desorption properties of magnesium hydride
[62], we added carbon (C) 5 wt% for the best sample as a
variation to investigate theinfluence of carbon for the selected
sample performance. Before PCI measurement, the samples
were activated by giving a hydrogen pressure of 5.01 MPa at
573 K and then evacuated at room temperature and repeated
five times. PCI for hydrogenation and dehydrogenation is
carried out at 473 K, 523 K and 573 K, both activation and PCI
measurement are limited for 2 h. The selection of the tem-
perature test based on the material characteristic and
compatibility for the material application. As the additional
information, the temperature also suitable for working tem-
perature concentrated solar power parabolic trough concen-
trator [63], which can be used for energy input in hydrogen
storage plants.

measurement

Table 3 — Sample variation according to the ratio and
milling parameters.

Sample  Ratio Parameter Milling
(wts)
Mg Ni Ball to powder Ball to powder
ratio 20:1 ratio 30:1
3Hours 5Hours 3 Hours 5 Hours
S, 86 14 v
S, 86 14 \
S 86 14 \
S, 86 14 \
Sg 8 15 v
Sg 85 15 \
S; 85 15 v
Ss 85 15 v
S 84 16 v
Sio 84 16 \
Sua 84 16 v
S12 84 16 v




INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 45 (2020) z2g9046—29058

29049

Result and discussion
Particle size distribution (PSD)

Mechanical milling aims to reduce ﬂaeaajn size of the ma-
terial. Itis essential to measure the size distribution from
the milled sample. Fig. 1 shows the size distribution from the
milled sample with the smallest size 44 pm and shows two
identical for 5, Ss, Ss, 57, Ss and 511 (odd) compared with Sa, Sa,
Sg, Sg, 51p and S, (even). It can be seen from the milling target
of 44 pm in odd samples ranging from 43.25 to 45.39 wt% and
even samples from 80.02 to 86.72 wt%. Based on Table 3, the
main difference between odd and even samples are in the
milling time, where the even sample milled for 5 h. Thus, it
can be concluded that the longer milling time is suitable for
decreasing the grain size, in accordance with the literature
[64].

From all samples milled for 5 h, other factors influence the
achievement of 44 pm size. 5,, 5; and 5; show relatively lower
achievement for 44 pm compared to Sg, S1pand Si2, which can
be influenced by the ball to powder ratio and material pro-
portion in the sample (Table 3). S, S; and Sg have higher
magnesium content rather than Sy, and S5, since the initial
size of magnesium is 74 pm then the proportion of magnesium
affects directly to the achievement of the targeted size 44 pm.
There is an exception for S; and Sg; both samples have the
same proportion but proceed with different ball to powder
ratio, then it is clear to be said the higher ball to powder ratio
leads to finer particle size. It can be observed from Sypand S,,
where Si2 milled with the ball to powder ratio 30:1 has finer
final size than Sy, which milled with the ball to powder ratio
20:1. Fig. 2 shows all milled samples for 5 h.

Moisture test
Magnesium reacts with oxygen and forms magnesium oxide,

which affects hydrogen to react during the hydriding process
and also reduces storage capacity in magnesium. Since

100

51 52 53 54 55

56 5
Sample

magnesium is very sensitive to oxygen, it is crucial to know
the moisture content of the sample, especially for samplesina
large amount that has a higher possibility of contamination
with oxygen and air. As shown in Table 4., a single moisture
test before and after the PSD test reveals a slight increase in
moisture content. The overall moisture content for each
sample before milling and after PSD is less than 0.3%, and the
average difference is less than 0.01%. This condition indicates
that the preparation and processing of the material affect the
small amount for moisture content in the material [65], hence
reducing the possibility of magnesium oxide formation [66].
There was no significant difference between the samples
milled for 3 and 5 h; hence the effect of the milling time has
not affected the increase of moisture content.

Initial hydrogenation and dehydrogenation for all samples

The hydrogenation result is shown in Fig. 3. It obviously
observed that pure magnesium has the slowest kinetic rate
during the hydrogenation and start to absorb hydrogen after
80 min at 670 K. The addition of nickel to the sample clearly
shows a good acceleration during hydrogenation and from the
graph it appears that the kinetic rate linear as the nickel
content in the sample increased. The highest achievement
was aimed at Mgg.Ni,g samples (Sq — S5} with the total
absorbed H, 0.901, 0.938, 0.901, and 0.979 wt% H, respectively.

The dehydrogenation pattern (Fig. 4) is also identic to the
hydrogenation where pure magnesium shows poor kinetic
and sample with nickel has a better kinetic rate. Among all
samples of Mgzs:Niyg, S0 and Si12 showed the highest absorp-
tion 0.938 and 0.979 wt% H,. However, the graph shows that
the absorption/desorption model in 5,, experienced a sudden
increase at 60 min at 590 K.

A sudden rise during hydrogenation/dehydrogenation in
Sz (green circle in Fig. 5) makes unstable absorption and
desorption of Hy, which results in shorter cycles and unstable
systems for specific applications. Both samples were milled
5 h under the different ball to powder ratios, and yields were

H4d pm
=a3 pm
=74 um
= 105 pm
=49 pm

m 177 pm

58 59 510 511 512

Fig. 1 — Particle size chart from the milled samples.
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Fig. 2 — Particle size chart from sample milled for 5 h.

Table 4 — Moisture content for all sample.

Sample Sample Ratio % Moisture Content  Apc
(Mg:Ni) (MC)
Before After
_a Milling PSD
21 86:14 0.176 0188 0012
B 86:14 0.177 0189 0,012
Ss 86:14 0.180 0191 0011
S4 86:14 0.182 01350 0.008
B 85:15 0.281 0285  0.004
BE 85:15 0282 0291 0.009
B 85:15 0.285 0290 0,005
B 85:15 0.281 0289 0.008
B 84:16 0.189 0201 0012
B 84:16 0.183 0191 0,008
S 84:16 0.191 0197 0,006
B 84:16 0.195 0202 0007
Average %MC 0.217 0225  0.0085

slightly different for particle sizes 44 and 63 pm where Sy, had
B5.88% and 13.32% and for S, are 86.66% and 12.76%,
respectively (Fig. 3). Therefore, there is no direct effect due to
particle size differences. Another consideration is the mois-
ture content (Table 4) in the as milled S,, (0.202%) is higher
than as milled S (0.191%). Higher moisture content in Sq5 is
the factor that affects the instability phenomenon during
hydrogenation/dehydrogenation, and it can only be cbserved
under a large s le (100 g). The O, exposure causes the
formation of the oxide layer on the metal surface, and it cre-
ates abarrier for the hydrogen molecules to penetrate the bulk
material. When the pressure from the hydrogen molecule
reaches the saturated point and strengthened by nickel,

which produces a more substantial penetration effect on the
surface, the oxide layer will break, and the reaction of hydride
formation is too fast, causing a sudden release of heat around
thebulk material. This phenomenon proves the importance of
measuring moisture content in samples that are sensitive to
air contamination to avoid misinterpretation reading of the
hydriding/dehydriding result.

Further observations for microstructural and morpholog-
ical in 510 and 545 aim to see the effects of the initial hydro-
genation and dehydrogenation. Each sample was compared
before and after hydriding (Fig. ). As shown in S, after
dehydriding, there are several visible forms of porous (red
circled), the cause of this porous can be attributed to the
sudden rise in the sample during the hydriding and dehy-
driding process.

Activation for the best sample

Two new samples are prepared for PCI measurement, as
milled Mgzs:Nig and as milled Mgga:Niig + 5 wt% C (10 ).
The purpose of adding carbon is to provide variations in the
characterization of the MgNi system because, in some re-
ports, the addition of carbon as a composite for the MgHs>
system has a good influence on thermal conductivity and
also dehydrogenation rate [67—69]. The addition of carbon
is limited to only 5 wt% to aveid decreasing kinetic hydro-
genation [70]. The samples are activated before PCI mea-
surements. The activation process is carried out by
introducing a hydrogen pressure of 5.01 MPa for 2 h. The
temperature is 573.15 K and kept constant during the pro-
cess. The goal for the activation process is to remove gases
or liquids that may still be present in the system and also to
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Fig. 4 — TPD dehydrogenation for all samples.

weaken the oxide layer and improve the hydrogenation
process.

From the graphical model in Fig. 7, there is a higher ab-
sorption surge between the 3rd to the 4th cycle. For instance,
Mgea:Ni ¢ absorbed 2.17 wt% H; at the end of the 3rd cycle and
leap to 3.13 wt% at the end of the 4th cycle, the same phe-
nomenon was observed from Mgg,:Nijg + 5 wt% C. It appears
due to a significant elastic effect caused by mutual influence
from each particle during phase changing(« — ( phase), and it
does not appear in smaller sample sizes [71]. The activation

and degasification cause the sample to prepare a better
hydrogen dissociation, and from Fig. 7 shows that absorption
capacity increases as the cycle repeated. The change in ab-
sorption capacity from the 4th to the 5th cycle is not very
significant compared to the previous cycle. The addition of
carbon to Mgss:Ni,¢ made a slight decrease in for the absorbed
H, but does not have a significant effect on the rate of kinetic
reaction. As a special note, the void volume of the bed reactor
is carefully checked after each cycle done to avoid misreading
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the measurement results caused by deformation in reactor
geometry due to the activation process.

Pressure-composition-isotherm

The result from PCI measurements for Mgsa:Niig and Mggs:Nijg
+5 wt% C are shown in Fig. 8 The straight line on the graph
shows the plateau pressure, and it indicates the existence of
the a—phase (solid solution) and f—phase (hydride solution).
The increase in temperature is followed by an increase in
hydrogen pressure and also affects the shorter plateau line,
which means the less hydrogen capacity absorbed by the
sample. The shorter the plateau, the shorter the formation of
the transition phase (z + B phase), so the total absorbed
hydrogen decreases and lead to a quicker hydride solution.
Equilibrium pressure at 473 K for each sample occurs at
relatively low pressure. The equilibrium pressure for Mg14:Ni;g
and Mgg,:Ni g + 5wt Care 0.206 MPa and 0.179, respectively.
Low equilibrium pressure during absorption and desorption is
a significant achievement that only occur in samples with
larger capacity in agreement with the literature [71]. The
reduction is supported by the use of multi-porous tubes and
combined heating system in bed reactor to promote a better
heat and hydrogen distribution to the sample, consequently
the sample able to achieve equilibrium pressure at relatively
lower pressure and temperature. It makes a higher hydrogen
absorption in the sample at lower temperatures where
Mgea:Niygis 5.29 wt% H; and Mga,:Niyg + 5 wt% C 4.37 wt% H,.
The addition of carbon directly impacts the reduction of
the absorbed H, amount of the sample, and also from the
graph, it can be observed that the hysterical loss sample with

carbon is higher. Hysteresis loss is unfavorable on the hydride
system due to the lower desorption pressure compared to
absorption, and it is not desirable for practical applications.
Data from PCI measurement is used to make the Van not Hoff
plot to estimate enthal nd entropy formation for the hy-
dride formation. Fig. 9 shows the Van’t Hoff plot graph for
both samples, and all values related to the PCI measurement
results are summarized in Table 5.

The enthalpy and entropy formation of Mggs:Niig and the
storage capacity generally is better than most reported
research in MgNi system, especially in this study the reduc-
tion of particle size through ball milling is simply made
without reaching nano size. It is an important@ding related
to the development of magnesium hydride as a hydrogen
storage material with the addition of nickel as a catalyst to
improve the performance of MgH,. There two keys factor that
needs to be considered, first the material treatment and
handling must pay attention to the moisture content that has
an impact on the hydriding process, second is the bed storage
for hydriding/dehydriding must be able to provide sufficient
distribution of the H, and heat to the materials; thus the
actual properties and characteristic of the material can be
more clearly understanding.

The desorption pressure drop is seen in Fig. 9(b) for
Mgzq:Niss + 5 wt% C where the desorption slope is below the
absorption plot, yields a significant increase for enthalpy and
entropy formation during desorption. In contrast to that,
Mgzs:Nig shows the desorption slope is slightly lower than the
absorption slope. Changes in the absorption capacity and
equilibrium pressure cause an increase in the values of AH
and AS from samples with carbon, which directly affects the

MagsuiNiss

# ahsarplicn

adesorplion

10 (10 P

n P

¥=6.26801 + 11,939

10T (K

b ahsorpten

Migas:Nipe + S wit% €
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¥ =-T6H51x 4 16563

by

17 15 (R 21 1z

19007 (K}

Fig. 9 — Van’t Hoff plot from PCI for Mgg,:Ni, ¢ (a) and Mgg4:Ni, ¢ + 5 wt% C (b).
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Table 5 — Calculated thermodynamic properties from PCI measurements.

Sample T Pobs Pies AH,p,. AHgeq AS s ASges Hysteresis Loss

K) Pressure (kJ/mol) (kJ/mol) (J/mol.K) (l/mol.K) (kJ/mol)

Equilibrium
(MPa)

Mg Nisg 473 0.206 0.199 0.06798

523 0.745 0.704 ~53.98 52.28 120.02 115.89 0.12307

553 2258 2.018 0.25832
MgeqNigs + 5 Witk C 473 0.179 0.131 0.61384

523 0.786 0.720 ~60.51 63.89 132.65 137.69 0.19068

553 2569 2211 0.33461

stability of the hydride formed, and thus the decomposition of
the hydride requires higher energy. There is a unique char-
acteristic for the hysteresis loss value in MggaNijs + 5 wt% C
where the hysteresis loss is not linear concerning an increase
in temperature (in Mgga:Niqg is linear) where at a temperature
of 523 K the hysteresis loss value decreases. In MgH, system,
carbon acts merely as a simple scaffold, and there is no re-
action between metal hydride and carbon during the synthe-
sis process, the different value of hysteresis loss at 523 K can
be used as a special consideration to find an association be-
tween the thermodynamic consideration of the additional
carbon in MgH; system.

After thermodynamic evaluation from PCI measurement,
the kinetic properties of the sample need to describe in order
to study the sample performance in terms of how quickly the
sample able to absorb and desorb hydrogen. Fig. 10 shows the
hydrogenation for both samples and it is clear to note that as
the temperature increase, the kinetic rate will increase.
MgzaNiys shows an excellent performance where it can absorb
hydrogen at lower temperatures, and it is evidently the effect
of nickel as catalyst changed the pathway during the

hydriding process. In contrast, during hydrogenation sample
with carbon has a slower rate compared to Mgaa:Niqe.

It can be seen from Fig. 11, Mgea:Nijg + 5 wtS C shows
different performance during the dehydriding process. The
kinetic rate during the dehydrogenation process in the sample
with carbon is quicker compared to during hydrogenation,
and the increase in temperature also accelerates the kinetic,
in good agreement with [72]. The drawback due to carbon
addition is decreased the desorbed H; as the temperature in-
crease, which is proven the impact of hysteresis loss. Table 6
shows distinctly that temperature rises is accompanied by a
decrease in percent effective storage, apart from that, sample
Mgza:Nijg 5 Wt% C at 523 K has a higher effective capacity than
473 K. According to Table 5 where hysteresis loss at 523 K for
MgsaNijg 5 wt% C decreased, it has a direct effect on the
effective storage capacity. Again, it reinforces that there is an
interrelationship between the effect of temperature and
pressure on Mggs:Nijg + 5 wt% C that only occurs at certain
temperatures and pressures.

Apart from the decrease in capacity due to hysteresis loss,
all samples have effective storage above 95%. Referring to

® Mgga:Nis
m Mgga:Nijg + 5 witds C

5 +

Absorbed H, (wt%)
t IS
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Fig. 10 — Hydrogenation for Mgg,:Ni,; and Mgg,:Ni ¢ + 5 wit% C.
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Fig. 11 — Dehydrogenation for Mgss:Niis and Mgs4:Niys + 5 Wt C.

Table 6 — Comparison for absorbed and desorbed H, at specific temperature.

Sample T (K) wt% Ha % effective H; storage
Hydrogenation Dehydrogenation
Mggi:Niyg 473 529 =519 98.1
523 529 -5.18 97.9
553 529 ~5.15 973
Mgz Niss + 5wt G 473 437 —4.26 97.5
523 437 ~4.28 97.9
553 4.37 —4.20 96.1

kinetic considerations, the addition of Ni by 16 wt% to the Mg
system has an excellent catalyst effect, which increases the
hydrogenation and dehydrogenation rates. The addition of Ni
by 16% also helps improve thermodynamic properties where
the enthalpy of formation is decreased while keep maintain-
ing storage capacity above 5 wt%. Special consideration was
found with the addition of carbon by 5 wt%, which had an
excellent dehydrogenation effect but had an impact on
reducing the hydrogenation rate and storage capacity. One
important thing needs to be investigated further related to the
relationship between carbon and system temperature and
pressure because at temperature 523 K the addition of carbon
shows quite different characteristics, primarily related to
lower hysteresis loss; lower than the same sample at tem-
peratures 473 K and 573 K.

Conclusions

This study shows the recent developments for the
improvement of the MgH, system by decreasing grain size
and adding nickel as a catalyst. Although there have been
many reports related to these two efforts, most of the

method reported is less economically feasible and limited to
a small sample capacity. An important finding from this
study shows that the importance of measuring moisture
content in samples (especially magnesium based) because
moisture content can be a factor that influences the nature
of the sample when characterized. We limit the nickel
addition in the range of 14-16% and show the pattern the
kinetic rate is increased as well as the increase of nickel
content. The most important thing that can be obtained
through this study is the achievement of the absorption
capacity of hydrogen in the Mgg:Niyg which can absorb
hydrogen above 5 wt% through a simple reduction in grain
size without nanosizing, though the final capacity of the
sample is lower than the reference. The application of
proper bed storage that enriches the hydrogen distribution
through the sample provides a better heat transfer, and a
large sample capacity can be used as a consideration to
determine the actual performance of the MgH, system. In
particular, further research is needed to find the relationship
between carbon and pressure and temperature about the
effect of carbon on the thermodynamic nature of the system.
Further research needs to consider testing the cycle of
Mggs:Niyg and also in different Ni ranges.
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